
Graph Theory for Rule-based Modeling ofBiohemial NetworksMihael L. Blinov, Jin Yang, James R. Faeder, and William S. HlavaekTheoretial Biology and Biophysis Group, Theoretial Division, Los AlamosNational Laboratory, Los Alamos, NM 87545, USAfmblinov,jyang,faeder,wishg�lanl.govAbstrat. We introdue a graph-theoreti formalism suitable for mod-eling biohemial networks marked by ombinatorial omplexity, suh assignal-transdution systems, in whih protein-protein interations play aprominent role. This development extends earlier work by allowing forexpliit representation of the onnetivity of a protein omplex. Withinthe formalism, typed attributed graphs are used to represent proteinsand their funtional omponents, omplexes, onformations, and statesof post-translational ovalent modi�ation. Graph transformation rulesare used to represent protein-protein interations and their e�ets. Eahrule de�nes a generalized reation, i.e., a lass of potential reations thatare logially onsistent with knowledge or assumptions about the rep-resented biomoleular interation. A model is spei�ed by de�ning 1)moleular-entity graphs, whih delimit the moleular entities and mate-rial omponents of a system and their possible states, 2) graph transfor-mation rules, and 3) a seed set of graphs representing hemial speies,suh as the initial speies present before introdution of a signal. A re-ation network is generated iteratively through appliation of the graphtransformation rules. The rules are �rst applied to the seed graphs andthen to any and all new graphs that subsequently arise as a result ofgraph transformation. This proedure ontinues until no new graphs aregenerated or a spei�ed termination ondition is satis�ed. The formal-ism supports the generation of a list of reations in a system, whih anbe used to derive di�erent types of physiohemial models, whih anbe simulated and analyzed in di�erent ways. The proesses of generat-ing and simulating the network may be ombined so that speies aregenerated only as needed.1 IntrodutionA ommon feature of biohemial networks, espeially those omprising protein-protein interations, is ombinatorial omplexity [15,7, 29, 26℄, whih is presentwhenever a relatively small number of biomoleular interations have the poten-tial to generate a muh larger number of distint hemial speies and reations.For a system marked by ombinatorial omplexity, the onventional approah ofmanually speifying eah term of a mathematial model is often impossible if the



2 Mihael L. Blinov, Jin Yang, James R. Faeder, and William S. Hlavaekmodel is intended to aount omprehensively for the onsequenes of biomole-ular interations. Thousands of reations may arise from the interations of onlya few proteins, as in ases we have studied [25,19, 5℄. A solution to this problemis to speify a rule for eah biomoleular interation and its e�ets, and then usethe rules to automatially generate a logially onsistent reation network andorresponding models, whih may take diverse forms. This approah has beenused, typially ad ho, to model a number of signal-transdution systems (forexamples, see [47,28, 36℄). These systems, in whih ombinatorial omplexity isubiquitous, regulate ellular responses to environmental stimuli through protein-protein interations and play important roles in many diseases. The omplexityof models an be redued in ertain irumstanes [8,18, 6℄, but methods fortreating ombinatorial omplexity are still needed.Reently, several frameworks and software tools have been developed formodeling biohemial networks through formalized desriptions of biomoleularinterations. These frameworks inlude visualization tools and visual languages[34,12, 32, 1℄, proess algebras [43,10℄, and di�erent types of rewrite systems [9,48,20, 4, 17℄. Software tools that allow spei�ation of a kineti model via rulesfor biomoleular interations inlude BioNetGen [4, 17℄ and BIOCHAM [20℄. Inboth ases, rules are expressed in a rudimentary but general-purpose languageand interpreted through proedures of pattern mathing and string rewriting.Another tool that an be used to obtain a kineti model, Moleulizer, provides aset of modules for model spei�ation [37℄. Eah module funtions as a reationgenerator for a partiular type of reation. Related work is disussed in moredetail later.Here, we provide a theoretial framework for extending the BioNetGen lan-guage to inlude graph transformation rules [2℄. This report formalizes the di-agrammati onventions proposed in [16℄ for representing proteins and proteinomplexes as graphs and introdues new details about the graphial proeduresfor model spei�ation and generation. The motivation for this extension is adesire to be able to expliitly trak and aount for the onnetivity of a pro-tein omplex, whih is important, for example, when the reativity of a omplexdepends on its on�guration, whih is ommon. The graph-theoreti formalismis tailored to the problem of building physiohemial models of biohemialnetworks, partiularly protein-protein interation networks. It allows for the ab-stration of proteins, funtional omponents of proteins, and protein omplexes,inluding multimeri proteins that funtion as a unit. Throughout the text, wewill illustrate onepts using artoon diagrams of [16℄. Most of these diagramspertain to the model of [19℄ for membrane-proximal events in F�RI-mediatedsignal transdution.2 Model Spei�ationA model spei�ation neessarily inludes a de�nition of the material parts of asystem and all of the internal states of these parts to be onsidered. An exampleof an internal state, whih might be assoiated with a tyrosine residue (as a on-



Graph Theory for Rule-based Modeling of Biohemial Networks 3venient abstration), is phosphorylation status. The two possible states of suh aprotein omponent might be labeled `phosphorylated' and `not phosphorylated.'Another example is the three-dimensional onformation of a protein. If onsid-eration of two onformations is adequate for modeling purposes, these statesmight be labeled `open' and `losed.' A spei�ation also inludes a de�nition ofthe hemial transformations that an potentially take plae in a system. Sometransformations may hange the onnetivity of moleular parts, as when twoproteins form a omplex. Other transformations may hange the internal statesof moleular parts, as when a protein tyrosine kinase (PTK) atalyzes a phospho-rylation reation or when binding of a ligand indues a onformational hangeof an allosteri enzyme. A reation network is obtained by applying reationrules for hemial transformations to a seed set of hemial speies. Ensemblefuntions orresponding to readouts of interest, suh as onserved quantities orobservables, an be used to speify model outputs. Graphs for elements of amodel spei�ation are de�ned in detail below.2.1 Moleular Entities, Components, and ComplexesMost moleular entities of interest, suh as polypeptide hains, are struturedunits of a biohemial network. Proteins involved in signal transdution, for ex-ample, typially ontain multiple funtional omponents and interations aremediated by suh omponents. Examples inlude sites of modi�ation (aminoaid residues), protein motifs, atalyti subunits, and protein interation do-mains [41℄.De�nition 1. A Moleular-entity Graph is a triple M = (V;E;AM ), where Vis a set of labeled attributed verties and E is a set of undireted edges. Ver-ties represent omponents. Vertex labels need not be unique; multiple vertieswith the same label indiate omponents onsidered to be equivalent and maygive rise to strutural symmetry. Edges represent intra- or intermoleular bondsbetween omponents. A moleular-entity graph has a unique label and may havean optional set of attributes AM .Moleular-entity graphs for the four proteins onsidered in the F�RI modelare shown in Fig. 1(a). Note that edges are not inluded, even though theomponents of the moleules are physially onneted. Consideration of theseonnetions would not a�et the behavior of this partiular model. Moleular-entity graphs reet the level of abstration in a model and largely de�ne themodel's sope. Additional de�nition of the problem domain omes from typingof the omponents and edges in moleular-entity graphs, whih is disussed later.Briey, typing de�nes whih attributes of a vertex are variable and whih are�xed. Typing also de�nes the possible values of the variable attributes. Fixedattributes might inlude sequene, moleular weight, links to annotation soures,et. Moleular weight is one example of a �xed attribute that might a�et re-ativity [37, 17℄. An example of a variable attribute is phosphorylation status,whih often a�ets binding ativity.
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gFig. 1. Graphs of the F�RI model. (a) Graph representations of moleular entitiesin the model of [19℄ aording to onventions proposed in [16℄, with minor deviations.Verties within the PTK Syk represent three omponents: tandem SH2 phosphotyrosinebinding domains, linker region (L) and ativation loop (A). Components L and Ahave a `state' attribute that an take two values: Y and pY, orresponding to `notphosphorylated' and `phosphorylated'. The bivalent ligand is omprised of two identialbinding domains (F). The PTK Lyn inludes a single omponent that lumps theunique and SH2 domains of this protein. The multihain F�RI reeptor onsists ofthree omponents representing the �, � and dimeri  hains of the reeptor. The �and  omponents have phosphorylation state attributes like A and L above. (b) Ahemial speies graph. () Component-level type graph (CTG) orresponding to thismodel. (d) The hemial speies in (b) typed over CTG by the typing mapping g. (e) Apattern graph. (f) Members of an ensemble of hemial speies mathed by the patterngraph.In the future, it may be desirable to extend the onept of moleular entity toembrae reursion, suh that a moleular entity may be omprised of moleularentities. In the meantime, we treat a omplex of moleular entities as a speialase.De�nition 2. A Complex Graph M� is a onneted set of moleular-entitygraphs. A omplex graph may be assoiated with an alphanumeri label, if desired,and an optional set of attributes.In the model of [19℄, 300 out of 354 potential hemial speies ontain a re-eptor dimer, whih an be represented as a omplex graph. It is important toonsider omplexes, beause omplexes an be observed experimentally and areoften of funtional signi�ane. An example is provided by the ase of a reeptorthat beomes phosphorylated only when it is omplexed with a seond reeptorof the same type. Complex graphs are onneted at the level of moleular-entitygraphs, but beause the verties of a moleular-entity graph need not be on-neted, a omplex graph may be unonneted at the level of omponent verties.Note that if we restrit ourselves to onsideration of binary interations (thedefault assumption), then eah vertex of a omplex graph is onneted by atmost one edge. The label of a omplex graph may be either assigned or derivedfrom stoihiometry and moleule labels.



Graph Theory for Rule-based Modeling of Biohemial Networks 52.2 Chemial SpeiesThe material building bloks of a biohemial network, de�ned above, are itsomponents, moleules, and omplexes. Chemial speies, one of the two kindsof elements in a hemial reation network, are partiular on�gurations of thesebuilding bloks in spei� internal states.De�nition 3. A Chemial-speies Graph C is a moleular-entity or omplexgraph with any and all variable attributes taking spei� values.A hemial-speies graph is illustrated in Fig. 1(b). Note that, onsistent withthe layout onventions of [16℄, moleular-entity graphs omprising the hemial-speies graph are enlosed in boxes for larity and some labels are suppressed toavoid lutter.2.3 Types of Components and BondsThe moleular-entity graphs of a system, and all derivative graphs of a system,are typed over a omponent-level type graph, whih de�nes the types of vertiesand edges in the system.De�nition 4. A Component-level Type Graph (CTG) of a biohemial systemomprises a pair (CV;CE), where CV is a set of vertex (omponent) types, andCE is a set of edge (bond) types. Eah type is assoiated with a set of attributes,whih may be variable or �xed. Values of �xed attributes are de�ned, and theallowable values of variable attributes are enumerated or otherwise indiated. Anygraph G of a system omprised of or derived from the system's set of moleular-entity graphs is typed over CTG via a mapping g : G! CTG.As indiated in Fig. 1(), we onsider the omponents of moleules in theF�RI model to belong to one of two types. Eah omponent is a site of bind-ing and/or a site of phosphorylation. A site of phosphorylation has a variableattribute, whih has two possible values, Y (not phosphorylated) or pY (phos-phorylated). Components �, �, , F, unique/SH2, and SH2 are sites of binding.Components �, , L, and A are sites of phosphorylation. The type graph ofFig. 1() further indiates that two types of bonds are onsidered. A bond is al-lowed between two binding sites or between a binding site and a phosphorylationsite. A typing mapping is partially illustrated in Fig. 1(d).2.4 Pattern Graphs and Ensembles of Chemial SpeiesPattern graphs are derived from moleular-entity graphs. They appear in rea-tion rules and funtion evaluation rules, de�ned later, and they an be onsid-ered subgraphs of hemial-speies graphs. We refer to the set of hemial-speiesgraphs mathing a pattern graph as an ensemble, beause these graphs representhemial speies that all have a ommon reativity or all ontribute to a ommonquantity (the value of an output funtion).



6 Mihael L. Blinov, Jin Yang, James R. Faeder, and William S. HlavaekDe�nition 5. A Pattern Graph P = (VP ; EP ) is a set of moleular-entityand/or omplex graphs. These graphs need not be onneted. The omponents,moleular entities, and omplexes of P may eah be assoiated with a set ofvariable attributes. In addition, onnetivity of the graphs of P to external om-ponents is spei�ed via an interfae. The Interfae of a Pattern Graph IP is apartition of VP into three sets: VP = V 0P FV 1P FV 01P , where V 0P is a set of om-ponents that annot be bound to omponents external to the pattern graph, V 1Pis a set of omponents that must be bound to omponents external to the patterngraph, and V 01P is a set of omponents that are free to be either bound or unboundto omponents external to the pattern graph.A pattern graph is illustrated in Fig. 1(e). Aording to the onventionsof [16℄, the interfae of a pattern graph is spei�ed by the symbol used for anode (open, half-�lled, or �lled irle). An open irle represents a omponentv 2 V 0P . A half-�lled irle represents a omponent v 2 V 01P . A �lled irlerepresents a omponent v 2 V 1P . By onvention, a half-�lled irle is omitted inthe diagrammati representation of a graph if values of variable attributes ofthis omponent are unrestrited. As indiated earlier, a pattern graph is used tode�ne an ensemble of hemial-speies graphs.De�nition 6. An Ensemble of Chemial-speies Graphs 
P is a set of hemial-speies graphs eah mathed by an idential pattern graph P .A hemial speies graph C = (V;E) is mathed by a pattern graph P =(VP ; EP ) i�1. there exists a subgraph C 0 = (V 0; E0) � C isomorphi to P via an isomor-phism f : P ! C 0;2. f is onsistent with the interfae IP ; and3. f preserves attributes of omponents, moleular entities, and omplexes, e.g.,for a vertex v 2 VP attributes of f(v) 2 V 0 fall within the set of attributesde�ned for v 2 VP .Figure 1(f) shows an ensemble of hemial-speies graphs, eah of whih ismathed by the pattern graph of Fig. 1(e). Note that hemial-speies graphsontaining multiple subgraphs isomorphi to a pattern graph may be mathedmultiple times. For example, the simple string pattern AB mathes BAB twie.In the future, it may be useful to assoiate `ontext' attributes with verties ofa pattern graph to restrit or otherwise ontrol the number of mathes, whiha�ets parameterization of reations (see below).The observables of an experiment typially orrespond to properties of en-sembles. Thus, it is important to be able to determine suh properties so thatmodel preditions an be tested. This apability is obtained by speifying afuntion evaluation rule [4,17℄.De�nition 7. A Funtion Evaluation Rule is a pattern P and a funtion ofattributes of hemial-speies graphs belonging to 
P . This funtion is referredto as an output funtion.



Graph Theory for Rule-based Modeling of Biohemial Networks 7A funtion evaluation rule is proessed by �rst �nding the hemial-speiesgraphs mathed by the pattern graph of the rule and then alulating the valueof the rule's output funtion. An example of an output funtion is a weightedsum of onentrations. A rule assoiated with this type of funtion is useful, forexample, for determining the total onentration of a protein X in a partiularstate of phosphorylation when the protein may be distributed among numeroushemial speies, as is usually the ase. Conentrations of hemial speies areweighted by the number of X proteins in eah speies.2.5 Chemial ReationsWe have now introdued de�nitions needed to onsider one of the two kinds ofelements in a biohemial reation network, a hemial speies. The seond kindof element is a hemial reation.De�nition 8. A Chemial Reation � omprises a set of reatant hemialspeies graphs R�, a set of produt hemial speies graphs P�, and a rate law��. Produt hemial speies graphs are obtained from reatant hemial speiesgraphs via graph rewriting onsistent with hemistry.Graph rewriting onsistent with hemistry in the ase of a losed systemmeans that P� is obtained from R� via omposition of the following operations:{ addition/removal of intra- or inter-moleular edge(s),{ hange of values of variables attribute(s), and{ replaement of a moleular entity or set of moleular entities with anothermoleular entity or set of moleular entities having the same omponents.The �rst two lasses of operations are found in the F�RI model. The third lassof operations is allowed so that one may model assembly and disassembly of amultimeri protein (Fig. 2(d)), ovalent reations between proteins, and prote-olyti leavage of a protein. Examples of the latter reations our in ativationof the omplement system via the lassial pathway. (The enzyme C1 assembleson the surfae of an antigen, whih leads to leavage of omplement omponentC3 to generate fragments C3a and C3b. C3b may then attah ovalently to theantigen.) Two additional operations are allowed for an open system: synthesisand degradation of a set of moleular entities. Degradation of a moleule meansthat its orresponding moleular-entity graph is removed (to a sink external tothe system being modeled) along with any and all bonds to whih it is onneted.Synthesis of a moleule means that a new moleular entity appears (from a soureexternal to the system being modeled). Finally, we note that the seond lass ofoperations inludes transport between ompartments if ompartment loationis inluded as a variable attribute of moleular entities in a multiompartmentsystem.Figure 2 illustrates hemial reations involving representative rewriting op-erations. The omposition of the rewriting operations of a reation implies amapping f� between verties of R� and P�. This mapping must preserve, add,



8 Mihael L. Blinov, Jin Yang, James R. Faeder, and William S. Hlavaekand remove moleular-entity graphs as units. In other words, if any vertex of amoleular entity in R� maps to ; then all other verties of this moleular entitymust also map to ; (Fig. 2(e)). Vie versa, if some vertex v 2 M � P� laks apreimage, then no other verties of M may have preimages. Importantly, up tosynthesis/degradation of moleular entities, f� preserves omponents, i.e., ver-ties of hemial speies in R� and P� are the same even if moleular entities arereplaed with other moleular entities (Fig. 2(d)).
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Graph Theory for Rule-based Modeling of Biohemial Networks 9Dangling edges are removed. This proess of graph rewriting orresponds tothe well-known single-pushout approah [13℄. Note that, to avoid ambiguitywhile embedding PP in Cr , any vertex of RP in V 0RP of the interfae IRPmust remain in the same set in PP , i.e., f(V 0RP ) � V 0PP .3. The rate law � is a funtion of rate parameters, suh as a single-site rateonstant, and properties of hemial speies Cr, suh as their onentrations.4. The appliation ondition � may inlude, for example, a pattern seletingspeies that may not serve as reatants.5. The preedene index N is the priority of reations generated by the rule.It is sometimes onvenient to speify a rule that will generate reations thatreplae a subset of reations generated by another rule [17℄.A reation rule is illustrated in Fig. 3(a). It should be noted that a negativeappliation ondition an be spei�ed by assigning a zero-valued rate law to arule. All reations with lower preedene generated by other rules are overridden.A pratial appliation of this idea is the ase in whih an inhibitor of an enzymeis introdued to a model. An old rule that generates reations atalyzed by theenzyme an be overridden by a new rule that additionally ontains the inhibitorin RP and generates with higher preedene a reation with a zero-valued orredued rate.3 Model Generation3.1 Appliation of Reation RulesA biohemial reation network an be generated through iterative appliationof a set of reation rules to a seed set of hemial speies until no further hangeis possible (exhaustive generation) or a spei�ed termination ondition is reahed(suh as iteration until a given number of produt speies or reations has beengenerated).The proess of applying reation rules to a set of distint hemial speiesgraphs C0 onsists of the following steps, generalizing the algorithm of [17℄. Foreah hemial speies C mathed by RP , a transformation replaes RP in Cwith PP aording to a proedure of graph rewriting, whih as mentioned earlierorresponds to the standard single-pushout approah [13℄.1. For eah reation rule rm;n; RP1+: : :RPm ! PP1+: : : PPn, identify all setsof speies graphs in C0 that qualify as reatants. Then, for eah RPi, �ndall mathing speies graphs Ci 2 C0. If an appliation ondition is spei�ed,exlude all sets of speies graphs that do not satisfy the ondition.2. For eah set of reatant speies FCi, de�ne a hemial reation (graph trans-formation) by replaing the image of FRPi in FCi with FPPj. In thisoperation, attributes of verties in FCi that do not di�er between the or-responding verties of FRPi and FPPj are preserved. Inident edges ofFCi not indiated in FRPi or FPPj are also preserved. Any edge (l; )between a vertex l 2 FRPj and  2 C n FRPi is either replaed with an



10 Mihael L. Blinov, Jin Yang, James R. Faeder, and William S. Hlavaekedge (f(l); ), if f(l) 2 FPPj, or removed, if f(l) = ;. Assign the preedeneindex N of the reation rule to eah reation.3. Applying all reation rules to the set of seed speies, generate a list of distintreations R0. If the list R0 ontains idential reations with di�erent pree-dene indies, delete reations with indies less than the maximum index.All idential reations of the same preedene remain in R0.4. Identify hemial speies that are produts in the list R0 but that are notisomorphi to any in the list C0 to obtain a list of new speies graphs C1.
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Graph Theory for Rule-based Modeling of Biohemial Networks 11break up of polymer hains of alternating ligands and reeptors. Rule () and itsreverse form desribe ring losure and opening. The potential size of the networkis limited physially by the numbers of ligands and reeptors and binding pa-rameters, but without regard to these quantities, the network is of in�nite size.Rule evaluation an be terminated by speifying an arbitrary uto� for hainsize, number of speies, et. or a maximum number of iterations of rule evalu-ation. With suh an approah, one must be areful to ensure that a generatednetwork is of suÆient size to enompass the speies populated in a simulation.Alternatively, as desribed below, rule evaluation an be embedded in networksimulation. With this approah, network elements (speies and reations) aregenerated as needed and arbitrary termination of network generation is avoided.The fat that a set of reation rules an generate sets of speies and reations ofunbounded size demonstrates that membership of a given speies in a reationnetwork is semi-deidable, meaning that membership annot generally be ruledout in a �nite number of steps. Also, in general, it annot be determined if eval-uation of a set of rules will eventually terminate in the absene of a spei�edtermination ondition, suh as a maximum number of iterations. For biohemi-al systems, it is diÆult to imagine a situation in whih non-terminating ruleevaluation ould pose a major problem. The e�etive size of a network is alwayslimited for physial reasons (e.g., as when only a �nite number of moleules isavailable to populate the speies of a network). An example of network size beinglimited by protein opy number is disussed in [15℄.
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Fig. 4. Reation rules for interation of a bivalent ligand with a bivalent ell-surfaereeptor. Evaluation of these rules is non-terminating. (a) Rule for ligand apture ruleand an example of rule appliation. (b) Rule for reeptor hain elongation and anexample of rule appliation. () Rule for reeptor hain losure and an example of ruleappliation. Note that the rate law in this rule depends on ring size [11℄. Also notethat pattern RP3 selets a single speies, whereas the pattern RP2 above selets twospeies.



12 Mihael L. Blinov, Jin Yang, James R. Faeder, and William S. HlavaekComputational Complexity The proedure of rule evaluation may be om-putationally expensive for several reasons. Two important issues are as follows.1. A problem of subgraph isomorphism must be solved to map a pattern graphonto a speies graph. Eah reatant pattern in a rule set must be tested forisomorphism against all of the speies arising in a network.2. A problem of graph isomorphism must be solved to determine the uniquenessof a speies graph appearing in a new reation. Eah produt of a new re-ation must be heked for uniqueness against the other speies arising ina network, whih an be aomplished by generating a anonial label (astring) for eah produt of eah reation.The need to solve these problems in the proedure of rule evaluation ouldlimit the appliability of our modeling approah to `small' systems in some ir-umstanes. However, we expet the proedure to be pratial more often thannot. Two fators serve to mitigate the omputational osts. First, the vertiesof graphs are labeled and attributed, and as a result, the omputational ost ofisomorphism sales as the number of idential verties (those sharing the samelabel and attributes). This number is small in most ases we have onsidered, forexample, as in two models we have reported for signal-transdution systems [19,5℄. It should be noted that these models are among the largest ever onsideredfor suh systems, omparable in size to models developed for other systems usingdistint rule-based methods [36, 37℄. Seond, even in ases where the �rst prop-erty does not hold, as in the model of Fig. 4, the maximum degree of verties isgenerally small, one to three, and thus low-omplexity algorithms are applia-ble [38, 21℄. An unoptimized prototype implementation of our algorithm in Perl(available upon request) demonstrates the pratiality of the algorithm,whih wehave used to generate an array of biologial networks ranging in size from soresof speies to more than 104 speies (unpublished material). Compared with themethod of BioNetGen 1.1 [4, 17℄, whih is based on string mathing and sub-stitution, we �nd that graph-based network generation is urrently about anorder of magnitude slower. However, the method is still feasible. For example,with a laptop omputer, the model of [19℄, whih inludes 354 speies, is gen-erated in about 2 s using BioNetGen 1.1 [4,17℄, and it is generated using theprototype software in about 45 s. An extension of this model that inludes 2954speies (available at http://ellsignaling.lanl.gov) is generated in about 40 sand 1400 s using the two software tools. Again, the prototype software has notbeen optimized: the algorithm for (sub)graph isomorphism implemented at thistime is simply that of Ullmann [50℄. Substantial improvements in performaneshould be possible.3.2 Assigning Reation ParametersAlthough the rate law is the same for all reations generated by a rule, rateonstants assigned to individual reations may be di�erent [17,37℄. For purposesof disussion, we will now assume that rate laws in reation rules are rate laws



Graph Theory for Rule-based Modeling of Biohemial Networks 13for elementary reations (i.e., they have the form �r = �r�mi=1[Ci℄, where [Ci℄denotes the onentration of hemial speies Ci) and that the rate onstant ofthe rate law, �r, is a single-site rate onstant. For a given individual reation, therate onstant �r may need to be multiplied by any of a variety of fators to ensureonsisteny with other reations generated by the same rule r. A fator may arisefor reasons related to ollision frequeny. For example, the ollision frequeny ofA+B reations, in the limit of large numbers, is twie that of A+A reations, allother fators being equal. A statistial fator may arise if there is reation pathdegeneray (multiple hemially indistinguishable reation paths from reatantsto produts). A fator may arise for reasons related to turnover frequeny in thease of a atalyti reation. For example, if formation of a omplex failitates anenzymati reation by o-loalizing enzyme and substrate, then we must onsiderthe number of enzymes in the omplex. A fator, whih equals a volume ratio,may arise if reations take plae in separate ompartments of di�erent volumes.Rate onstants may also be modi�ed by the properties of the reatant hemialspeies (Fig. 4()).Statistial fators are related to symmetries [17℄. Fators greater than 1 arisewhen a pattern RP is symmetri, meaning there exist non-trivial automorphisms : RP ! RP , and the reation rule breaks the symmetry of the pattern. Atransformation that ompletely breaks pattern symmetry is assoiated with astatistial fator of jAut(RP )j, where Aut(RP ) is the automorphism group ofRP . Consider, for example, the reation rule A:A ! A + A0 in whih A is amoleular entity graph, A0 is a form of A that di�ers with respet to attributevalues, RP � A:A, `.' represents an edge onneting moleular entities, and `+'serves to indiate that PP � A + A0 is disjoint union of the graphs A and A0and that the moleularity of eah reation de�ned by the rule is 2. The reatantpattern is symmetri, with jAut(RP )j = 2, but the nontrivial autmorphism isnot preserved under the mapping onto the produt patterns. This reation rule,applied to the hemial speies B:A:A:B, has a statistial fator of 2, beauseeither of the two A moleules an be transformed into A0 and the reationsB:A:A:B ! B:A + A0:B and B:A:A:B ! B:A0 + A:B are hemially indistin-guishable. When an automorphism is preserved under the mapping onto produtpatterns, it does not ontribute to the statistial fator of a reation. For exam-ple, the rule A:A ! A + A applied to the hemial speies B:A:A:B generatesthe reation B:A:A:B ! B:A + A:B with a statistial fator of one. In gen-eral, the statistial fator arising from pattern symmetry is given by the ratiojAut(RP )jjAut(RP!PP )j , where the denominator indiates the size of the group of autmor-phisms of RP that are preserved under the mapping of RP onto PP . Statistialfators also arise when the reatant hemial speies Cr ontain symmetri in-stanes of RP . For example, the rule A! A0 applied to A:A would generate thereation A:A! A:A0 with a statistial fator of 2.3.3 Embedding Rule Evaluation in SimulationThe method of network generation desribed above does not rely on the popula-tions of speies in the seed set or rate laws. One a biohemial reation network



14 Mihael L. Blinov, Jin Yang, James R. Faeder, and William S. Hlavaekhas been generated, it an be used to formulate di�erent types of models. Forexample, one an generate a system of oupled ordinary di�erential equations(ODEs) or a stohasti simulation algorithm (SSA) [23,24℄, whih is a MonteCarlo proedure for simulating disrete-event reation kinetis. However, thereare ases when all potential speies of a reation network annot be exhaus-tively enumerated, as for interation of a bivalent ligand with a bivalent reep-tor (Fig. 4). For suh a system, rule evaluation would proeed inde�nitely unlessan arbitrary termination ondition is spei�ed. A solution to this problem is toembed rule evaluation in the simulation proedure, suh that hemial speiesare generated only as needed. Two methods for embedding rule evaluation inSSA-based simulation of biohemial reation kinetis have been proposed [37,17℄, and both are now implemented in BioNetGen. With lazy rule evaluation[37℄, only reations and speies onneted to newly populated speies are gener-ated. With layered rule evaluation [17℄, the network is extended when a speiesis populated for the �rst time by applying the reation rules for a spei�ednumber of iterations (the default is one round), as in the proedure desribedearlier, to all urrent speies. The relative eÆienies of the various simulationproedures have yet to be fully evaluated, but preliminary (unpublished) resultsindiate that pregeneration of a network followed by simulation and on-the-ygeneration of a network during simulation are omplementary. Lazy and lay-ered simulation-embedded evaluation of rules are omparable for problems wehave onsidered (unpublished material). Embedding rule evaluation in ODE-based simulations is straightforward and may provide better performane thananalogous SSA-based simulations.4 DisussionThe sheer size of some biohemial systems makes it diÆult to formulate mod-els for them and represent these models in omprehensible ways. Reation rulesfor biomoleular interations help to solve these problems [29, 26℄. Rules serveas generators of reations, whih an then be translated into mathematial oromputational models, in the way SBML [30℄ is translated into, say, a system ofoupled ordinary di�erential equations (ODEs). In our experiene, the equationsof a rule-based model typially far outnumber the rules from whih they are de-rived [19, 5℄. The ability to generate models through automati interpretation ofrules overomes limitations of writing models manually, whih may be impossi-ble. In mathematis, many ombinatorial problems that are intratable beometratable when reformulated in terms of generating funtions (rules). Here, wehave extended methods for rule-based modeling of biohemial systems by intro-duing a formalism for graphial reation rules, whih an expressively representbiomoleular interations and the onsequenes of these interations.Our main motivation for introduing graphial reation rules is that suhrules allow the onnetivity of proteins in a omplex to be expliitly and system-atially represented. This ability is needed when onnetivity a�ets the reativ-ity of a omplex. A simple example is provided by the ase of a bivalent ligand



Graph Theory for Rule-based Modeling of Biohemial Networks 15interating with a bivalent ell-surfae reeptor. As illustrated in Fig. 4, suh aligand indues the formation of rings and hains of reeptors. However, only ahain, suh as the protein omplex illustrated on the right side of panel (b), anassoiate with additional ligand or reeptor. A ring, suh as the protein omplexillustrated on the right side of panel (), an only break apart. Clearly, hainsand rings, whih may have idential omposition and di�er only with respetto onnetivity, must be distinguished. The most straightforward way of solvingthis type of problem, we believe, is through the introdution of graphs. The ostof introduing graphs is omputational omplexity. This ost seems diÆult toavoid if one wishes to trak onnetivity of omplexes, whih is important formehanisti modeling of many biologial systems.Graphial reation rules have further representational advantages over othermeans of summarizing and analyzing biologial systems. They an be visualizedas artoon-like diagrams and therefore used for the same purpose as diagram-mati interation maps [34, 1℄, whih are in ommon use. However, unlike mostinteration maps, rules have preise interpretations [16℄. A set of well-posed rulesunambiguously spei�es a reation network, and a model for this network an begenerated through a omputational proedure that interprets the rules. Beausethe proedure is automati, one rules are spei�ed, very little mathematial oromputational expertise is required in priniple to obtain a mathematialmodel.Graphial reation rules are also lose in form to the type of biologial knowledgeusually available about a system, whih may onsist mainly of a list of proteins,their funtional omponents, and their binding and atalyti ativities, even fora well-studied system. Thus, beause graphial rules an be spei�ed essentiallyby drawing artoon-like diagrams (an interfae that provides this apability isin development) and they provide a natural way to formalize biologial knowl-edge, graphial rules may, with maturation of software, allow more biologists toontribute to the development of mathematial models, whih are needed forpreditive understanding of biologial systems, whih are exeedingly omplex.Finally, rules for biomoleular interations may be useful for high-throughputmodeling of large numbers of systems and for development of models that in-lude a large number of distint interating biomoleules. Rules are independentunits of a model spei�ation and sets of rules are ompositional, whih allowsmodels to be built inrementally. In priniple, rude models of a large size ouldbe built at present from information of pairwise protein-protein interationsurrently atalogued in eletroni databases, suh as the Human Protein Refer-ene Database [42℄. However, large-sale modeling of higher quality will requireataloging the funtional domains involved in interations and the onditionsunder whih interations take plae. Rules must be expressive enough to enodethis information, and graphial rules are a step forward. The independene ofrules failitates not only inremental model building but also the onsiderationof alternative models and mehanisti hypotheses. For example, to introdue aprotein-protein interation in a system to investigate its e�et, one an simplyadd an appropriate rule instead of adding and modifying possibly large numbersof interrelated equations or lines of ode. If rules are stored in a mahine-readable



16 Mihael L. Blinov, Jin Yang, James R. Faeder, and William S. Hlavaekformat in an eletroni database, they an be reused. Rules an be assembledin di�erent ways to de�ne models for di�erent systems, whih may share someomponents, and models for di�erent parts of a larger system an be integratedby ombining the orresponding sets of rules. Community standards for stor-ing and exhanging rule-based models of biologial systems are urrently beingdisussed [31, 22℄.4.1 Related WorkWe ontribute a new appliation of ideas from formal systems, graph rewrit-ing, and (sub)graph isomorphism. Our formalism is expressive enough to repre-sent protein-protein interations. There is probably muh room for algorithmiimprovement. A general framework for graph rewriting losely related to thepresent work is that of AGG [49℄. Graph rewriting has been used to model di-verse biologial systems [45℄ and other systems, suh as hemial systems [3℄ andself-assembling roboti systems [33℄. This body of work provided inspiration. Anumber of researh groups have developed various methods for rule-based mod-eling of signal-transdution systems. A few key referenes not already ited are[40,44, 14℄. Software tools related to BioNetGen inlude STOCHSIM [35℄, Celler-ator [46℄, Maude [14, 48℄, BIOCHAM [20℄, and Moleulizer [37℄. Others have alsosuggested, like us, the use of graphs to represent proteins and protein-proteininterations [9,10, 48℄.AknowledgementsThis work was supported by grant RR18754 from the National Institutes ofHealth and by the Department of Energy through ontrat W-7405-ENG-36.Wethank Joshua Colvin, Andrew Finney, Walter Fontana, Matthew Frike, NathanLemons, Paul Loriaux, Fangping Mu, Rihard G. Posner, David C. Torney, andAmitabh Trehan for helpful disussions.Referenes1. Aladjem, M.I., Pasa, S., Parodi, S., Weinstein, J.N., Pommier, Y., Kohn, K.W.:Moleular interation maps|a diagrammati graphial language for bioregulatorynetworks. Si. STKE 2004, pe8.2. Andries, M., Engels, G., Habel, A., Ho�mann, B., Kreowski, H.J., Kuske, S.,Plump, D., Shurr, A., Taentzer, A.: Graph transformation for spei�ation andprogramming. Si. Comput. Program. 34 (1999) 1{543. Benk�o, G., Flamm, C., Stadler, P.F.: A graph-based toy model of hemistry. J.Chem. Inf. Comput. Si. 43 (2003) 1085{10934. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavaek, W.S.: BioNetGen: software forrule-based modeling of signal transdution based on the interations of moleulardomains. Bioinformatis 20 (2004) 3289{3291
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